FORMATION OF SCHIFF’S BASE (ACACEN) USING ETHYLENEDIAMINE AND EFFECT OF PH ON ZINC (II) ION ON COATED SILICA GEL BY COLUMN METHOD
Rated 5/5 based on 7,652 reviews
Enugu, Nigeria
Nigeria
Enugu State
Nigeria
09080008483
info@projectng.com
09080008483
info@projectng.com

Formation Of Schiff’s Base (acacen) Using Ethylenediamine And Effect Of Ph On Zinc (ii) Ion On Coated Silica Gel By Column Method

Get the Complete Project Materials Now! »

FORMATION OF SCHIFF’S BASE (ACACEN) USING ETHYLENEDIAMINE AND EFFECT OF pH ON ZINC (II) ION ON COATED SILICA GEL BY COLUMN METHOD

ABSTRACT

Acetylacetone ethylenediamine (ACACEN) is a Schiff base resulting from the condensation of pentan-2,4-dione and 1,2-diaminoethane. Solid-phase extraction of Zn (II)  by column method in the pH range 1-12 have been studied in trichloromethane using acetylacetone ethylenediamine (ACACEN). Zn (II) extraction using 2% ACACEN in CHCl3 is sufficient or abundant in the pH of 5.0. The aqueous ACACEN shows a maximum absorption at 320nm.The Zn (II) complex has maximum absorption at 572nm.The acid dissociation constants of H2B (ACACEN) are obtained of by titrating with 0.179M NaOH and are found to be pKaiD = 11.55 and PKa2D = 11.55 corresponding to the formation of HB- and B2 respectively. pKaID and pKa2D share the common value since H2B (ACACEN) has two ionizable hydrogen atoms located in the same chemical environment. Electronic spectrum of ACACEN suggests that ACACEN absorbs maximally in the ultraviolet regions of the spectrum and not in the visible region since it is not displayed in the spectrum. The physical modification of the silica gel using ACACEN has also been studied. The optimal pH value is found at the pH5.

 

TABLE OF CONTENT

Title page                                                                         i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         

Certification page                                                             ii                                  

Dedication page                                                               iii                                   

Acknowledgement                                                            iv                                 

Abstract                                                                            v                                                                                                                 

Table of contents                                                             vi                                                                                                                                                                                                           

 

CHAPTER ONE

1.0 Introduction                                                               1

1.1 Background of the study                                            1

1.2 Objectives of the study                                               3     

1.3 Statements of the problem                                        4

1.4 Hypotheses of the study                                             5

1.5 Significance of the study                                            5

1.6 Limitation of the study                                               6

CHAPTER TWO

2.0 Literature review                                                                7

2.1 Metal ion under study zinc (II) ion                             10

2.1.1 Uses/properties of zinc                                           10

2.2  Solid phase extraction                                              11

2.3 Mechanism of solid phase extraction process            13

2.4 Solid phase extraction process                                  19

2.5 Sorbent in SPE                                                          22

2.6 Coupling Solid Phase Extraction with various

      Techniques                                                                        37

    CHAPTER THREE

3.0 Materials and Method                                                40

3.1 Materials                                                                    40

3.1.1 Instruments/Equipment                                         40

3.1.2 Chemical reagents                                                  41

3.2 Methods                                                                     46

3.2.1 Synthesis of the Schiff’s base acetylacetone

        ethlylenediamine(ACACEN).                                     46

3.2.2 Activation of silica gel                                             47

3.2.3 Preparation of stock solution of the ligand,

        acetlyacetone ethylenediamine                                        47

3.2.4 Preparation of the buffer solutions (pH1- pH 12)    48

3.2.5 Preparation of immobilized Schiff’s base

        (ACACEN) silica gel                                                  48                                                                                 

3.2.6 Preparation of the extraction column                      49

3.2.7 Effect of pH on the modified silica gel                     49                                                                                

3.2.8 Determination of the acid dissociation constant

        of the ACACEN                                                         50

3.2.9  Determination of wavelength of maximum

        absorbance (max) of aqueous ACACEN                         51

 CHAPTER FOUR

4.0 Result and Discussion                                               52

4.1 Results                                                                      52

4.1.1 Activation of silica gel                                             52

4.1.2 Properties of ACACEN                                             52

4.1.3 Electronic spectrum of ACACEN                             53

4.1.4 Acid dissociation constants of ACACEN                          54

4.1.5 Effect of sample volumes on modified silica gel      55

4.2 Discussion                                                                 56

4.2.1 Activation of silica gel                                             56

4.2.2 Properties of ACACEN                                             56

4.2.3 Electronic spectrum of ACACEN in aqueous

        solution                                                                  57

4.2.4 Acid dissociation constants of ACACEN                  57

CHAPTER FIVE

5.0 Conclusion and Recommendation                             59

5.1Conclusion                                                                 59

5.2 Recommendation                                                       60                          

References                                                                      61

 

           CHAPTER ONE

1.0      INTRODUCTION

1.1      BACKGROUND OF THE STUDY

Schiff’s bases are important class of organic compounds (Arulmurugan et al., 2010). They were first reported by Hugo Schiff in 1864. Schiff’s bases are condensation products of primary amines with carbonyl compounds. The common structural feature of these compounds is the azomethine group with the general formula RHC=N-R1, where R and R1 are alkyl, aryl, cycloalkyl or heterocyclic groups (Arulmurugan et al., 2010). Structurally, a Schiff’s base (also known as imine or azomethine) is a nitrogen analogue of an aldehyde or ketone in which the carbohyl group (>C=O) is replaced by an imine or azomethine group. Schiff’s bases have also been shown to exhibit a broad range of biological activities, including antifungal, antibacterial, antimalarial, anti-inflamatory, antiviral and antipyretic properties (Przybylski et al., 2009). Imine or azomethine groups are present in various natural, naturally derived and non-naturally compounds. The imine group present in such compounds has been shown to be critical to their biological activities (Guo et al., 2007). Schiff’s bases are important compounds owing to their wide range of industrial applications (Li et al., 2003). Schiff’s bases are used in the photostabilization of poly (vinyl chloride) polymers against photodegradation by ultraviolet radiation (Yousif et al., 2011) are also used to improve poly(methyl methacrylate) from degradation (Yousif et al,. 2012) and to prevent polystyrene from photodegration by their addition to polymer films (Yousif et al., 2012).

 

Acetylacetone is an organic compound that famously exists in two tautomeric forms that rapidly interconvert. The pair of tautomers rapidly interconvert and are treated as a single compound in most applications. Although the compound is formally named as the diketone form, pentane-2,4-dione, the end form forms a substantial component of the material and is actually the favoured form in many solvents. It is a colourless liquid that is precursor to acetylacetonate (acac), a common bidentate ligand. It is also a building block for the synthesis of heterocyclic compound.

The keto and enol forms of acetylacetone coexist in solution; these forms are tautomers. The end form has the hydrogen shared equally between the two oxygen atoms in the gas phase, the equilibrium constant, Keto-enol is 11.7, favoring the end form. The two tautomeric forms can easily be distinguished by NMR spectroscopy, IR spectroscopy and other methods.

1.2 OBJECTIVES OF THE STUDY

The main purpose of this study is the development of new sorbent for preconcentration and separation of metal ions from aqueous solutions. The research work will be focused on the following objectives.

a.   To develop new sorbent for pre-concentrating metal ions from aqueous solution.

b.  To institute and synthesize Schiff base which can be used in the solid support surface to get a new sorbent with high sorption/adsorption efficiency.

c.   To enhance the condition for extraction.

d.  To improve trace elemental determination of selected elements commonly found in our environment.

e.   To determine lmax of acacen ligand.

f.    To activate and modify the silica gel.

 

1.3 STATEMENT OF PROBLEM

Heavy metal mobility and bioavailability depend strongly on their chemical and mineralogical forms in which they occur. Several specification studies have been conducted to determine and study different forms of heavy metals rather their total metal content. Solid phase extraction (SPE) is an increasingly useful sample preparation technique. With SPE many of the problems associated with liquid/liquid extraction can be prevented, such as incomplete phase separations, less than quantitative recoveries, use of expensive, breakable specialty glassware and disposal of large quantities of organic solvents. SPE is more efficient than liquid/liquid extraction, yield quantitative extractions that are easy to perform, rapid, and can be automated. Solvent use and laboratory time are reduced.

SPE is used most often to prepare liquid sample and extract semi-volatile or non-volatile analysis, but also can be used with solids that are pre-extracted into solvents. SPE products are excellent for sample extraction, concentration and clean-up. They are available in a wide variety of chemistries, absorbents and sizes. 1.4   HYPOTHESES OF THE STUDY

Ho (Null Hypotheses): The solid phase extraction of trace metals with Schiff base (ACACEN) by column method.

Ha (alternative hypothesis): Solid phase extraction of trace metalswithout Schiff’s base (ACACEN).

1.5   SIGNIFICANCE OF THE STUDY

The significance of this research work is to enlighten the scholars, educationists and the public on the importance of solid phase extraction as a means of extracting metal ions from complexes and to give background information on experimental procedure of the study. This research work will also serve as a stepping stone for subsequent researches.

1.6       LIMITATION OF THE STUDY

     This research study is limited to the Schiff’s base known as  acetylacetone ethylenediamine. It is also limited to or important to the determination of only zinc (II) ion. It involves extraction using column method.

 

Download Formation Of Schiff’s Base (acacen) Using Ethylenediamine And Effect Of Ph On Zinc (ii) Ion On Coated Silica Gel By Column Method Research Materials

Share On Social